Point Reflection

In geometry, a point reflection or inversion in a point (or inversion through a point, or central inversion) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is invariant under point reflection through its center, it is said to possess central symmetry or to be centrally symmetric.

Point reflection can be classified as an affine transformation. Namely, it is an isometric involutive affine transformation, which has exactly one fixed point, which is the point of inversion. It is equivalent to a homothetic transformation with scale factor equal to -1. The point of inversion is also called homothetic center.

Read more about Point Reflection:  Terminology, Examples, Formula, Point Reflection As A Special Case of Uniform Scaling or Homothety, Point Reflection Group, Point Reflections in Mathematics, Properties, Inversion With Respect To The Origin, See Also

Famous quotes containing the words point and/or reflection:

    Most childhood problems don’t result from “bad” parenting, but are the inevitable result of the growing that parents and children do together. The point isn’t to head off these problems or find ways around them, but rather to work through them together and in doing so to develop a relationship of mutual trust to rely on when the next problem comes along.
    Fred Rogers (20th century)

    Public morning diversions were the last dissipating habit she obtained; but when that was accomplished, her time was squandered away, the power of reflection was lost, [and] her ideas were all centered in dress, drums, routs, operas, masquerades, and every kind of public diversion. Visionary schemes of pleasure were continually present to her imagination, and her brain was whirled about by such a dizziness that she might properly be said to labor under the distemper called the vertigo.
    Sarah Fielding (1710–1768)