Formula
Given a vector a in the Euclidean space Rn, the formula for the reflection of a across the point p is
In the case where p is the origin, point reflection is simply the negation of the vector a (see reflection through the origin).
In Euclidean geometry, the inversion of a point X in respect to a point P is a point X* such that P is the midpoint of the line segment with endpoints X and X*. In other words, the vector from X to P is the same as the vector from P to X*.
The formula for the inversion in P is
- x*=2a−x
where a, x and x* are the position vectors of P, X and X* respectively.
This mapping is an isometric involutive affine transformation which has exactly one fixed point, which is P.
Read more about this topic: Point Reflection
Famous quotes containing the word formula:
“So, if we must give a general formula applicable to all kinds of soul, we must describe it as the first actuality [entelechy] of a natural organized body.”
—Aristotle (384323 B.C.)
“The formula for achieving a successful relationship is simple: you should treat all disasters as if they were trivialities but never treat a triviality as if it were a disaster.”
—Quentin Crisp (b. 1908)
“I feel like a white granular mass of amorphous crystalsmy formula appears to be isomeric with Spasmotoxin. My aurochloride precipitates into beautiful prismatic needles. My Platinochloride develops octohedron crystals,with a fine blue florescence. My physiological action is not indifferent. One millionth of a grain injected under the skin of a frog produced instantaneous death accompanied by an orange blossom odor.”
—Lafcadio Hearn (18501904)