Point Reflection Group
The composition of two point reflections is a translation. Specifically, point reflection at p followed by point reflection at q is translation by the vector 2(q – p).
The set consisting of all point reflections and translations is Lie subgroup of the Euclidean group. It is a semidirect product of Rn with a cyclic group of order 2, the latter acting on Rn by negation. It is precisely the subgroup of the Euclidean group that fixes the line at infinity pointwise.
In the case n = 1, the point reflection group is the full isometry group of the line.
Read more about this topic: Point Reflection
Famous quotes containing the words point, reflection and/or group:
“... many American Jews have a morbid tendency to exaggerate their handicaps and difficulties. ... There is no doubt that the Jew ... has to be twice as good as the average non- Jew to succeed in many a field of endeavor. But to dwell upon these injustices to the point of self-pity is to weaken the personality unnecessarily. Every human being has handicaps of one sort or another. The brave individual accepts them and by accepting conquers them.”
—Agnes E. Meyer (18871970)
“With respect to a true culture and manhood, we are essentially provincial still, not metropolitan,mere Jonathans. We are provincial, because we do not find at home our standards; because we do not worship truth, but the reflection of truth; because we are warped and narrowed by an exclusive devotion to trade and commerce and manufacturers and agriculture and the like, which are but means, and not the end.”
—Henry David Thoreau (18171862)
“The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.”
—Babette Deutsch (18951982)