Partial Trace For Operators On Hilbert Spaces
The partial trace generalizes to operators on infinite dimensional Hilbert spaces. Suppose V, W are Hilbert spaces, and let
be an orthonormal basis for W. Now there is an isometric isomorphism
Under this decomposition, any operator can be regarded as an infinite matrix of operators on V
where .
First suppose T is a non-negative operator. In this case, all the diagonal entries of the above matrix are non-negative operators on V. If the sum
converges in the strong operator topology of L(V), it is independent of the chosen basis of W. The partial trace TrW(T) is defined to be this operator. The partial trace of a self-adjoint operator is defined if and only if the partial traces of the positive and negative parts are defined.
Read more about this topic: Partial Trace
Famous quotes containing the words partial, trace and/or spaces:
“There is no luck in literary reputation. They who make up the final verdict upon every book are not the partial and noisy readers of the hour when it appears; but a court as of angels, a public not to be bribed, not to be entreated, and not to be overawed, decides upon every mans title to fame. Only those books come down which deserve to last.”
—Ralph Waldo Emerson (18031882)
“And in these dark cells,
packed street after street,
souls live, hideous yet
O disfigured, defaced,
with no trace of the beauty
men once held so light.”
—Hilda Doolittle (18861961)
“In any case, raw aggression is thought to be the peculiar province of men, as nurturing is the peculiar province of women.... The psychologist Erik Erikson discovered that, while little girls playing with blocks generally create pleasant interior spaces and attractive entrances, little boys are inclined to pile up the blocks as high as they can and then watch them fall down: the contemplation of ruins, Erikson observes, is a masculine specialty.”
—Joyce Carol Oates (b. 1938)