Orthogonal Coordinates - Differential Operators in Three Dimensions

Differential Operators in Three Dimensions

Since these operations are common in application, all vector components in this section are presented with respect to the normalized basis.

Operator Expression
Gradient of a scalar field 
\nabla \phi =
\frac{\hat{ \mathbf e}_1}{h_1} \frac{\partial \phi}{\partial q^1} +
\frac{\hat{ \mathbf e}_2}{h_2} \frac{\partial \phi}{\partial q^2} +
\frac{\hat{ \mathbf e}_3}{h_3} \frac{\partial \phi}{\partial q^3}
Divergence of a vector field 
\nabla \cdot \mathbf F =
\frac{1}{h_1 h_2 h_3}
\left[
\frac{\partial}{\partial q^1} \left( F_1 h_2 h_3 \right) +
\frac{\partial}{\partial q^2} \left( F_2 h_3 h_1 \right) +
\frac{\partial}{\partial q^3} \left( F_3 h_1 h_2 \right)
\right]
Curl of a vector field 
\begin{align}
\nabla \times \mathbf F & =
\frac{\hat{ \mathbf e}_1}{h_2 h_3}
\left[
\frac{\partial}{\partial q^2} \left( h_3 F_3 \right) -
\frac{\partial}{\partial q^3} \left( h_2 F_2 \right)
\right] +
\frac{\hat{ \mathbf e}_2}{h_3 h_1}
\left[
\frac{\partial}{\partial q^3} \left( h_1 F_1 \right) -
\frac{\partial}{\partial q^1} \left( h_3 F_3 \right)
\right] \\
& + \frac{\hat{ \mathbf e}_3}{h_1 h_2}
\left[
\frac{\partial}{\partial q^1} \left( h_2 F_2 \right) -
\frac{\partial}{\partial q^2} \left( h_1 F_1 \right)
\right]
=\frac{1}{h_1 h_2 h_3}
\begin{vmatrix}
h_1\hat{\mathbf{e}}_1 & h_2\hat{\mathbf{e}}_2 & h_3\hat{\mathbf{e}}_3 \\
\dfrac{\partial}{\partial q^1} & \dfrac{\partial}{\partial q^2} & \dfrac{\partial}{\partial q^3} \\
h_1 F_1 & h_2 F_2 & h_3 F_3
\end{vmatrix}
\end{align}
Laplacian of a scalar field 
\nabla^2 \phi = \frac{1}{h_1 h_2 h_3}
\left[
\frac{\partial}{\partial q^1} \left( \frac{h_2 h_3}{h_1} \frac{\partial \phi}{\partial q^1} \right) +
\frac{\partial}{\partial q^2} \left( \frac{h_3 h_1}{h_2} \frac{\partial \phi}{\partial q^2} \right) +
\frac{\partial}{\partial q^3} \left( \frac{h_1 h_2}{h_3} \frac{\partial \phi}{\partial q^3} \right)
\right]

Read more about this topic:  Orthogonal Coordinates

Famous quotes containing the words differential and/or dimensions:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    The truth is that a Pigmy and a Patagonian, a Mouse and a Mammoth, derive their dimensions from the same nutritive juices.... [A]ll the manna of heaven would never raise the Mouse to the bulk of the Mammoth.
    Thomas Jefferson (1743–1826)