Orbital Resonance - History

History

Since the discovery of Newton's law of universal gravitation in the 17th century, the stability of the Solar System has preoccupied many mathematicians, starting with Laplace. The stable orbits that arise in a two-body approximation ignore the influence of other bodies. The effect of these added interactions on the stability of the Solar System is very small, but at first it was not known whether they might add up over longer periods to significantly change the orbital parameters and lead to a completely different configuration, or whether some other stabilising effects might maintain the configuration of the orbits of the planets.

It was Laplace who found the first answers explaining the remarkable dance of the Galilean moons (see below). It is fair to say that this general field of study has remained very active since then, with plenty more yet to be understood (e.g., how interactions of moonlets with particles of the rings of giant planets result in maintaining the rings).

Read more about this topic:  Orbital Resonance

Famous quotes containing the word history:

    No matter how vital experience might be while you lived it, no sooner was it ended and dead than it became as lifeless as the piles of dry dust in a school history book.
    Ellen Glasgow (1874–1945)

    Tell me of the height of the mountains of the moon, or of the diameter of space, and I may believe you, but of the secret history of the Almighty, and I shall pronounce thee mad.
    Henry David Thoreau (1817–1862)

    The history of the past is but one long struggle upward to equality.
    Elizabeth Cady Stanton (1815–1902)