Operator Product Expansion - General

General

In quantum field theory, the operator product expansion (OPE) is a convergent expansion of the product of two fields at different points as a sum (possibly infinite) of local fields.

More precisely, if x and y are two different points, and A and B are operator-valued fields, then there is an open neighborhood of y, O such that for all x in O/{y}

where the sum is over finitely or countably many terms, Ci are operator-valued fields, ci are analytic functions over O/{y} and the sum is convergent in the operator topology within O/{y}.

OPEs are most often used in conformal field theory.

The notation is often used to denote that the difference G(x,y)-F(x,y) remains analytic at the points x=y. This is an equivalence relation.

Read more about this topic:  Operator Product Expansion

Famous quotes containing the word general:

    Each victim of suicide gives his act a personal stamp which expresses his temperament, the special conditions in which he is involved, and which, consequently, cannot be explained by the social and general causes of the phenomenon.
    Emile Durkheim (1858–1917)

    In communist society, where nobody has one exclusive sphere of activity but each can become accomplished in any branch he wishes, society regulates the general production and thus makes it possible for me to do one thing today and another tomorrow, to hunt in the morning, fish in the afternoon, rear cattle in the evening, criticize after dinner, just as I have a mind, without ever becoming hunter, fisherman, shepherd or critic.
    Karl Marx (1818–1883)

    All the critics who could not make their reputations by discovering you are hoping to make them by predicting hopefully your approaching impotence, failure and general drying up of natural juices. Not a one will wish you luck or hope that you will keep on writing unless you have political affiliations in which case these will rally around and speak of you and Homer, Balzac, Zola and Link Steffens.
    Ernest Hemingway (1899–1961)