Operator Product Expansion - General

General

In quantum field theory, the operator product expansion (OPE) is a convergent expansion of the product of two fields at different points as a sum (possibly infinite) of local fields.

More precisely, if x and y are two different points, and A and B are operator-valued fields, then there is an open neighborhood of y, O such that for all x in O/{y}

where the sum is over finitely or countably many terms, Ci are operator-valued fields, ci are analytic functions over O/{y} and the sum is convergent in the operator topology within O/{y}.

OPEs are most often used in conformal field theory.

The notation is often used to denote that the difference G(x,y)-F(x,y) remains analytic at the points x=y. This is an equivalence relation.

Read more about this topic:  Operator Product Expansion

Famous quotes containing the word general:

    We ought, says Kant, to become acquainted with the instrument, before we undertake the work for which it is to be employed; for if the instrument be insufficient, all our trouble will be spent in vain. The plausibility of this suggestion has won for it general assent and admiration.... But the examination can be only carried out by an act of knowledge. To examine this so-called instrument is the same as to know it.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    Treating ‘water’ as a name of a single scattered object is not intended to enable us to dispense with general terms and plurality of reference. Scatter is in fact an inconsequential detail.
    Willard Van Orman Quine (b. 1908)

    As a general truth, it is safe to say that any picture that produces a moral impression is a bad picture.
    Edmond De Goncourt (1822–1896)