General
In quantum field theory, the operator product expansion (OPE) is a convergent expansion of the product of two fields at different points as a sum (possibly infinite) of local fields.
More precisely, if x and y are two different points, and A and B are operator-valued fields, then there is an open neighborhood of y, O such that for all x in O/{y}
where the sum is over finitely or countably many terms, Ci are operator-valued fields, ci are analytic functions over O/{y} and the sum is convergent in the operator topology within O/{y}.
OPEs are most often used in conformal field theory.
The notation is often used to denote that the difference G(x,y)-F(x,y) remains analytic at the points x=y. This is an equivalence relation.
Read more about this topic: Operator Product Expansion
Famous quotes containing the word general:
“I suggested to them also the great desirability of a general knowledge on the Island of the English language. They are under an English speaking government and are a part of the territory of an English speaking nation.... While I appreciated the desirability of maintaining their grasp on the Spanish language, the beauty of that language and the richness of its literature, that as a practical matter for them it was quite necessary to have a good comprehension of English.”
—Calvin Coolidge (18721933)
“That sort of half sigh, which, accompanied by two or three slight nods of the head, is pitys small change in general society.”
—Charles Dickens (18121870)
“Never alone
Did the King sigh, but with a general groan.”
—William Shakespeare (15641616)