Nucleophilic Acyl Substitution - Reactivity Trends

Reactivity Trends

There are five main types of acyl derivatives. Acid halides are the most reactive towards nucleophiles, followed by anhydrides, esters, and amides. Carboxylate ions are essentially unreactive towards nucleophilic substitution, since they possess no leaving group. It is interesting to note the reactivity of these five classes of compounds covers a broad range; the relative reaction rates of acid chlorides and amides differ by a factor of 1013.

A major factor in determining the reactivity of acyl derivatives is leaving group ability, which is related to acidity. Weak bases are better leaving groups than strong bases; a species with a strong conjugate acid (e.g. hydrochloric acid) will be a better leaving group than a species with a weak conjugate acid (e.g. acetic acid). Thus, chloride ion is a better leaving group than acetate ion. The reactivity of acyl compounds towards nucleophiles decreases as the basicity of the leaving group increases, as the table shows.

Compound Name Structure Leaving Group pKa of Conjugate Acid
Acetyl chloride -7
Acetic anhydride 4.76
Ethyl acetate 15.9
Acetamide 38
Acetate anion N/a N/a

Another factor that plays a role in determining the reactivity of acyl compounds is resonance. Amides exhibit two main resonance forms. Both are major contributors to the overall structure, so much so that the amide bond between the carbonyl carbon and the amide nitrogen has significant double bond character. The energy barrier for rotation about an amide bond is 75 to 85 kJ/mol (18 to 20 kcal/mol), much larger than values observed for normal single bonds. For example, the C–C bond in ethane has an energy barrier of only 12 kJ/mol (3 kcal/mol). Once a nucleophile attacks and a tetrahedral intermediate is formed, the energetically favorable resonance effect is lost. This helps explain why amides are one of the least reactive acyl derivatives.

Esters exhibit less resonance stabilization than amides, so the formation of a tetrahedral intermediate and subsequent loss of resonance is not as energetically unfavorable. Anhydrides experience even weaker resonance stabilization, since the resonance is split between two carbonyl groups, and are more reactive than esters and amides. In acid halides, there is very little resonance, so the energetic penalty for forming a tetrahedral intermediate is small. This helps explain why acid halides are the most reactive acyl derivatives.

Read more about this topic:  Nucleophilic Acyl Substitution

Famous quotes containing the word trends:

    Thanks to recent trends in the theory of knowledge, history is now better aware of its own worth and unassailability than it formerly was. It is precisely in its inexact character, in the fact that it can never be normative and does not have to be, that its security lies.
    Johan Huizinga (1872–1945)