Definition and Basic Properties
If is a vector of n predictions, and is the vector of the true values, then the MSE of the predictor is:
The MSE of an estimator with respect to the estimated parameter is defined as
The MSE is equal to the sum of the variance and the squared bias of the estimator
The MSE thus assesses the quality of an estimator in terms of its variation and unbiasedness. Note that the MSE is not equivalent to the expected value of the absolute error.
Since MSE is an expectation, it is not a random variable. It may be a function of the unknown parameter, but it does not depend on any random quantities. However, when MSE is computed for a particular estimator of the true value of which is not known, it will be subject to estimation error. In a Bayesian sense, this means that there are cases in which it may be treated as a random variable.
Read more about this topic: Mean Squared Error
Famous quotes containing the words definition, basic and/or properties:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“The basic essential of a great actor is that he loves himself in acting.”
—Charlie Chaplin (18891977)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)