Mean Squared Error - Definition and Basic Properties

Definition and Basic Properties

If is a vector of n predictions, and is the vector of the true values, then the MSE of the predictor is:

The MSE of an estimator with respect to the estimated parameter is defined as

The MSE is equal to the sum of the variance and the squared bias of the estimator

The MSE thus assesses the quality of an estimator in terms of its variation and unbiasedness. Note that the MSE is not equivalent to the expected value of the absolute error.

Since MSE is an expectation, it is not a random variable. It may be a function of the unknown parameter, but it does not depend on any random quantities. However, when MSE is computed for a particular estimator of the true value of which is not known, it will be subject to estimation error. In a Bayesian sense, this means that there are cases in which it may be treated as a random variable.

Read more about this topic:  Mean Squared Error

Famous quotes containing the words definition, basic and/or properties:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    Nothing and no one can destroy the Chinese people. They are relentless survivors. They are the oldest civilized people on earth. Their civilization passes through phases but its basic characteristics remain the same. They yield, they bend to the wind, but they never break.
    Pearl S. Buck (1892–1973)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)