Compatibility With Other Structures
If B is a bilinear form on V then we say that J preserves B if
- B(Ju, Jv) = B(u, v)
for all u,v in V. An equivalent characterization is that J is skew-adjoint with respect to B:
- B(Ju, v) = −B(u, Jv)
If g is an inner product on V then J preserves g if and only if J is an orthogonal transformation. Likewise, J preserves a nondegenerate, skew-symmetric form ω if and only if J is a symplectic transformation (that is, if ω(Ju,Jv) = ω(u,v)). For symplectic forms ω there is usually an added restriction for compatibility between J and ω, namely
- ω(u, Ju) > 0
for all u in V. If this condition is satisfied then J is said to tame ω.
Given a symplectic form ω and a linear complex structure J, one may define an associated symmetric bilinear form gJ on VJ
- gJ(u,v) = ω(u,Jv).
Because a symplectic form is nondegenerate, so is the associated bilinear form. Moreover, the associated form is preserved by J if and only if the symplectic form and if ω is tamed by J then the associated form is positive definite. Thus in this case the associated form is a Hermitian form and VJ is an inner product space.
Read more about this topic: Linear Complex Structure
Famous quotes containing the word structures:
“If there are people who feel that God wants them to change the structures of society, that is something between them and their God. We must serve him in whatever way we are called. I am called to help the individual; to love each poor person. Not to deal with institutions. I am in no position to judge.”
—Mother Teresa (b. 1910)