Linear Complex Structure
In mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space.
Complex structures have applications in representation theory as well as in complex geometry where they play an essential role in the definition of almost complex manifolds, and the term "complex structure" often refers to this structure on manifolds; when it refers instead to a structure on vector spaces, it may be called a "linear complex structure".
Read more about Linear Complex Structure: Definition and Properties, Compatibility With Other Structures, Relation To Complexifications, Extension To Related Vector Spaces
Famous quotes containing the words complex and/or structure:
“It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.”
—Jimmy Carter (James Earl Carter, Jr.)
“If rightly made, a boat would be a sort of amphibious animal, a creature of two elements, related by one half its structure to some swift and shapely fish, and by the other to some strong-winged and graceful bird.”
—Henry David Thoreau (18171862)