Relation To Complexifications
Given any real vector space V we may define its complexification by extension of scalars:
This is a complex vector space whose complex dimension is equal to the real dimension of V. It has a canonical complex conjugation defined by
If J is a complex structure on V, we may extend J by linearity to VC:
Since C is algebraically closed, J is guaranteed to have eigenvalues which satisfy λ2 = −1, namely λ = ±i. Thus we may write
where V+ and V− are the eigenspaces of +i and −i, respectively. Complex conjugation interchanges V+ and V−. The projection maps onto the V± eigenspaces are given by
So that
There is a natural complex linear isomorphism between VJ and V+, so these vector spaces can be considered the same, while V− may be regarded as the complex conjugate of VJ.
Note that if VJ has complex dimension n then both V+ and V− have complex dimension n while VC has complex dimension 2n.
Abstractly, if one starts with a complex vector space W and takes the complexification of the underlying real space, one obtains a space isomorphic to the direct sum of W and its conjugate:
Read more about this topic: Linear Complex Structure
Famous quotes containing the words relation to and/or relation:
“The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.”
—Terri Apter (20th century)
“When needs and means become abstract in quality, abstraction is also a character of the reciprocal relation of individuals to one another. This abstract character, universality, is the character of being recognized and is the moment which makes concrete, i.e. social, the isolated and abstract needs and their ways and means of satisfaction.”
—Georg Wilhelm Friedrich Hegel (17701831)