Relation To Complexifications
Given any real vector space V we may define its complexification by extension of scalars:
This is a complex vector space whose complex dimension is equal to the real dimension of V. It has a canonical complex conjugation defined by
If J is a complex structure on V, we may extend J by linearity to VC:
Since C is algebraically closed, J is guaranteed to have eigenvalues which satisfy λ2 = −1, namely λ = ±i. Thus we may write
where V+ and V− are the eigenspaces of +i and −i, respectively. Complex conjugation interchanges V+ and V−. The projection maps onto the V± eigenspaces are given by
So that
There is a natural complex linear isomorphism between VJ and V+, so these vector spaces can be considered the same, while V− may be regarded as the complex conjugate of VJ.
Note that if VJ has complex dimension n then both V+ and V− have complex dimension n while VC has complex dimension 2n.
Abstractly, if one starts with a complex vector space W and takes the complexification of the underlying real space, one obtains a space isomorphic to the direct sum of W and its conjugate:
Read more about this topic: Linear Complex Structure
Famous quotes containing the words relation to and/or relation:
“Among the most valuable but least appreciated experiences parenthood can provide are the opportunities it offers for exploring, reliving, and resolving ones own childhood problems in the context of ones relation to ones child.”
—Bruno Bettelheim (20th century)
“Any relation to the land, the habit of tilling it, or mining it, or even hunting on it, generates the feeling of patriotism. He who keeps shop on it, or he who merely uses it as a support to his desk and ledger, or to his manufactory, values it less.”
—Ralph Waldo Emerson (18031882)