Kernel Density Estimation
In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable. Kernel density estimation is a fundamental data smoothing problem where inferences about the population are made, based on a finite data sample. In some fields such as signal processing and econometrics it is also termed the Parzen–Rosenblatt window method, after Emanuel Parzen and Murray Rosenblatt, who are usually credited with independently creating it in its current form.
Read more about Kernel Density Estimation: Definition, Bandwidth Selection, Relation To The Characteristic Function Density Estimator, Statistical Implementation
Famous quotes containing the words kernel and/or estimation:
“All true histories contain instruction; though, in some, the treasure may be hard to find, and when found, so trivial in quantity that the dry, shrivelled kernel scarcely compensates for the trouble of cracking the nut.”
—Anne Brontë (18201849)
“A higher class, in the estimation and love of this city- building, market-going race of mankind, are the poets, who, from the intellectual kingdom, feed the thought and imagination with ideas and pictures which raise men out of the world of corn and money, and console them for the short-comings of the day, and the meanness of labor and traffic.”
—Ralph Waldo Emerson (18031882)