Kernel Density Estimation - Relation To The Characteristic Function Density Estimator

Relation To The Characteristic Function Density Estimator

Given the sample (x1, x2, …, xn), it is natural to estimate the characteristic function φ(t) = E as

 \hat\varphi(t) = \frac{1}{n} \sum_{j=1}^n e^{itx_j}

Knowing the characteristic function it is possible to find the corresponding probability density function through the inverse Fourier transform formula. One difficulty with applying this inversion formula is that it leads to a diverging integral since the estimate is unreliable for large t’s. To circumvent this problem, the estimator is multiplied by a damping function ψh(t) = ψ(ht), which is equal to 1 at the origin, and then falls to 0 at infinity. The “bandwidth parameter” h controls how fast we try to dampen the function . In particular when h is small, then ψh(t) will be approximately one for a large range of t’s, which means that remains practically unaltered in the most important region oft’s.

The most common choice for function ψ is either the uniform function ψ(t) = 1{−1 ≤ t ≤ 1}, which effectively means truncating the interval of integration in the inversion formula to, or the gaussian function ψ(t) = e−π t2. Once the function ψ has been chosen, the inversion formula may be applied, and the density estimator will be

\begin{align} \hat{f}(x) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat\varphi(t)\psi_h(t) e^{-itx}dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{n} \sum_{j=1}^n e^{it(x_j-x)} \psi(ht) dt \\ &= \frac{1}{nh} \sum_{j=1}^n \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-i(ht)\frac{x-x_j}{h}} \psi(ht) d(ht) = \frac{1}{nh} \sum_{j=1}^n K\Big(\frac{x-x_j}{h}\Big), \end{align}

where K is the inverse Fourier transform of the damping function ψ. Thus the kernel density estimator coincides with the characteristic function density estimator.

Read more about this topic:  Kernel Density Estimation

Famous quotes containing the words relation to the, relation to, relation and/or function:

    You see, I am alive, I am alive
    I stand in good relation to the earth
    I stand in good relation to the gods
    I stand in good relation to all that is beautiful
    I stand in good relation to the daughter of Tsen-tainte
    You see, I am alive, I am alive
    N. Scott Momaday (b. 1934)

    You must realize that I was suffering from love and I knew him as intimately as I knew my own image in a mirror. In other words, I knew him only in relation to myself.
    Angela Carter (1940–1992)

    The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.
    Terri Apter (20th century)

    Nobody seriously questions the principle that it is the function of mass culture to maintain public morale, and certainly nobody in the mass audience objects to having his morale maintained.
    Robert Warshow (1917–1955)