Iterated Function System

Iterated Function System

In mathematics, iterated function systems or IFSs are a method of constructing fractals; the resulting constructions are always self-similar.

IFS fractals, as they are normally called, can be of any number of dimensions, but are commonly computed and drawn in 2D. The fractal is made up of the union of several copies of itself, each copy being transformed by a function (hence "function system"). The canonical example is the Sierpinski gasket also called the Sierpinski triangle. The functions are normally contractive which means they bring points closer together and make shapes smaller. Hence the shape of an IFS fractal is made up of several possibly-overlapping smaller copies of itself, each of which is also made up of copies of itself, ad infinitum. This is the source of its self-similar fractal nature.

Read more about Iterated Function System:  Definition, Properties, Constructions, Examples, History

Famous quotes containing the words iterated, function and/or system:

    The customary cry,
    ‘Come buy, come buy,’
    With its iterated jingle
    Of sugar-bated words:
    Christina Georgina Rossetti (1830–1894)

    Philosophical questions are not by their nature insoluble. They are, indeed, radically different from scientific questions, because they concern the implications and other interrelations of ideas, not the order of physical events; their answers are interpretations instead of factual reports, and their function is to increase not our knowledge of nature, but our understanding of what we know.
    Susanne K. Langer (1895–1985)

    New York is more now than the sum of its people and buildings. It makes sense only as a mechanical intelligence, a transporter system for the daily absorbing and nightly redeploying of the human multitudes whose services it requires.
    Peter Conrad (b. 1948)