Inequality of Arithmetic and Geometric Means - Example Application

Example Application

Consider the function

for all positive real numbers x, y and z. Suppose we wish to find the minimal value of this function. First we rewrite it a bit:


\begin{align}
f(x,y,z)
&= 6 \cdot \frac{ \frac{x}{y} + \frac{1}{2} \sqrt{\frac{y}{z}} + \frac{1}{2} \sqrt{\frac{y}{z}} + \frac{1}{3} \sqrt{\frac{z}{x}} + \frac{1}{3} \sqrt{\frac{z}{x}} + \frac{1}{3} \sqrt{\frac{z}{x}} }{6}\\
&=6\cdot\frac{x_1+x_2+x_3+x_4+x_5+x_6}{6}
\end{align}

with

Applying the AM–GM inequality for n = 6, we get


\begin{align}
f(x,y,z)
&\ge 6 \cdot \sqrt{ \frac{x}{y} \cdot \frac{1}{2} \sqrt{\frac{y}{z}} \cdot \frac{1}{2} \sqrt{\frac{y}{z}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} }\\
&= 6 \cdot \sqrt{ \frac{1}{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3} \frac{x}{y} \frac{y}{z} \frac{z}{x} }\\
&= 2^{2/3} \cdot 3^{1/2}.
\end{align}

Further, we know that the two sides are equal exactly when all the terms of the mean are equal:

All the points (x,y,z) satisfying these conditions lie on a half-line starting at the origin and are given by

Read more about this topic:  Inequality Of Arithmetic And Geometric Means

Famous quotes containing the word application:

    The application requisite to the duties of the office I hold [governor of Virginia] is so excessive, and the execution of them after all so imperfect, that I have determined to retire from it at the close of the present campaign.
    Thomas Jefferson (1743–1826)

    Preaching is the expression of the moral sentiment in application to the duties of life.
    Ralph Waldo Emerson (1803–1882)