Incidence Algebra - Special Elements

Special Elements

The multiplicative identity element of the incidence algebra is the delta function, defined by


\delta(a, b) = \begin{cases}
1 & \text{if } a=b \\
0 & \text{if } a<b.
\end{cases}

The zeta function of an incidence algebra is the constant function ζ(a, b) = 1 for every interval . Multiplying by ζ is analogous to integration.

One can show that ζ is invertible in the incidence algebra (with respect to the convolution defined above). (Generally, a member h of the incidence algebra is invertible if and only if h(x, x) is invertible for every x.) The multiplicative inverse of the zeta function is the Möbius function μ(a, b); every value of μ(a, b) is an integral multiple of 1 in the base ring.

The Möbius function can also be defined directly, by the following relation:


\mu(x,y) = \begin{cases}
{}\qquad 1 & \textrm{if}\quad x = y\\
\displaystyle -\sum_{z : x\leq z <y} \mu(x,z) & \textrm{for} \quad x<y \\
{}\qquad 0 & \textrm{otherwise}.
\end{cases}

Multiplying by μ is analogous to differentiation, and is called Möbius inversion.

Read more about this topic:  Incidence Algebra

Famous quotes containing the words special and/or elements:

    We’ve got to figure these things a little bit different than most people. Y’know, there’s something about going out in a plane that beats any other way.... A guy that washes out at the controls of his own ship, well, he goes down doing the thing that he loved the best. It seems to me that that’s a very special way to die.
    Dalton Trumbo (1905–1976)

    It is a life-and-death conflict between all those grand, universal, man-respecting principles which we call by the comprehensive term democracy, and all those partial, person-respecting, class-favoring elements which we group together under that silver-slippered word aristocracy. If this war does not mean that, it means nothing.
    Antoinette Brown Blackwell (1825–1921)