Special Elements
The multiplicative identity element of the incidence algebra is the delta function, defined by
The zeta function of an incidence algebra is the constant function ζ(a, b) = 1 for every interval . Multiplying by ζ is analogous to integration.
One can show that ζ is invertible in the incidence algebra (with respect to the convolution defined above). (Generally, a member h of the incidence algebra is invertible if and only if h(x, x) is invertible for every x.) The multiplicative inverse of the zeta function is the Möbius function μ(a, b); every value of μ(a, b) is an integral multiple of 1 in the base ring.
The Möbius function can also be defined directly, by the following relation:
Multiplying by μ is analogous to differentiation, and is called Möbius inversion.
Read more about this topic: Incidence Algebra
Famous quotes containing the words special and/or elements:
“Myths, as compared with folk tales, are usually in a special category of seriousness: they are believed to have really happened, or to have some exceptional significance in explaining certain features of life, such as ritual. Again, whereas folk tales simply interchange motifs and develop variants, myths show an odd tendency to stick together and build up bigger structures. We have creation myths, fall and flood myths, metamorphose and dying-god myths.”
—Northrop Frye (19121991)
“An illustrious individual remarks that Mrs. [Elizabeth Cady] Stanton is the salt, Anna Dickinson the pepper, and Miss [Susan B.] Anthony the vinegar of the Female Suffrage movement. The very elements get the white male into a nice pickle.”
—Anonymous, U.S. womens magazine contributor. The Revolution (August 19, 1869)