Special Elements
The multiplicative identity element of the incidence algebra is the delta function, defined by
The zeta function of an incidence algebra is the constant function ζ(a, b) = 1 for every interval . Multiplying by ζ is analogous to integration.
One can show that ζ is invertible in the incidence algebra (with respect to the convolution defined above). (Generally, a member h of the incidence algebra is invertible if and only if h(x, x) is invertible for every x.) The multiplicative inverse of the zeta function is the Möbius function μ(a, b); every value of μ(a, b) is an integral multiple of 1 in the base ring.
The Möbius function can also be defined directly, by the following relation:
Multiplying by μ is analogous to differentiation, and is called Möbius inversion.
Read more about this topic: Incidence Algebra
Famous quotes containing the words special and/or elements:
“Weve got to figure these things a little bit different than most people. Yknow, theres something about going out in a plane that beats any other way.... A guy that washes out at the controls of his own ship, well, he goes down doing the thing that he loved the best. It seems to me that thats a very special way to die.”
—Dalton Trumbo (19051976)
“It is a life-and-death conflict between all those grand, universal, man-respecting principles which we call by the comprehensive term democracy, and all those partial, person-respecting, class-favoring elements which we group together under that silver-slippered word aristocracy. If this war does not mean that, it means nothing.”
—Antoinette Brown Blackwell (18251921)