Ideal Norm

Ideal Norm

In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.

Read more about Ideal Norm:  Relative Norm, Absolute Norm

Famous quotes containing the words ideal and/or norm:

    It is well worth the efforts of a lifetime to have attained knowledge which justifies an attack on the root of all evil—viz. the deadly atheism which asserts that because forms of evil have always existed in society, therefore they must always exist; and that the attainment of a high ideal is a hopeless chimera.
    Elizabeth Blackwell (1821–1910)

    A society that presumes a norm of violence and celebrates aggression, whether in the subway, on the football field, or in the conduct of its business, cannot help making celebrities of the people who would destroy it.
    Lewis H. Lapham (b. 1935)