History of Rockets - Accuracy of Early Rockets

Accuracy of Early Rockets

The major figure in the field at this time became William Congreve, son of the Comptroller of the Royal Arsenal, Woolwich, London. Under the influence of the Mysorean rockets from India, he developed the Congreve rocket. From there, the use of military rockets spread throughout Europe. At the Battle of Baltimore in 1814, the rockets fired on Fort McHenry by the rocket vessel HMS Erebus were the source of the rockets' red glare described by Francis Scott Key in The Star-Spangled Banner. Rockets were also used in the Battle of Waterloo.

Early rockets were very, very inaccurate. Without the use of spinning or any gimballing of the thrust, they had a strong tendency to veer sharply off course from the desired trajectory. The early British Congreve rockets reduced this somewhat by attaching a long stick to the end of a rocket (similar to modern bottle rockets) to make it harder for the rocket to change course. The largest of the Congreve rockets was the 32-pound (14.5 kg) Carcass, which had a 15-foot (4.6 m) stick. Originally, sticks were mounted on the side, but this was later changed to mounting in the center of the rocket, reducing drag and enabling the rocket to be more accurately fired from a segment of pipe.

Congreve prepared a new propellant mixture, and developed a rocket motor with a strong iron tube with conical nose, weighing about 32 pounds (14.5 kilograms). The Royal Arsenal's first demonstration of solid fuel rockets was in 1805. The rockets were effectively used during the Napoleonic Wars and the War of 1812. Congreve published three books on rocketry.

In 1815, Alexander Dmitrievich Zasyadko began his work on creating military gunpowder rockets. He constructed rocket-launching platforms, which allowed to fire in salvos (6 rockets at a time), and gun-laying devices. Zasyadko elaborated a tactic for military use of rocket weaponry. In 1820, Zasyadko was appointed head of the Petersburg Armory, Okhtensky Powder Factory, pyrotechnic laboratory and the first Highest Artillery School in Russia. He organized rocket production in a special rocket workshop and created the first rocket sub-unit in the Russian army.

The accuracy problem was mostly solved in 1844 when William Hale modified the rocket design so that thrust was slightly vectored, causing the rocket to spin along its axis of travel like a bullet. The Hale rocket removed the need for a rocket stick, travelled further due to reduced air resistance, and was far more accurate.

Read more about this topic:  History Of Rockets

Famous quotes containing the words accuracy of, accuracy, early and/or rockets:

    Such is the never-failing beauty and accuracy of language, the most perfect art in the world; the chisel of a thousand years retouches it.
    Henry David Thoreau (1817–1862)

    Such is the never-failing beauty and accuracy of language, the most perfect art in the world; the chisel of a thousand years retouches it.
    Henry David Thoreau (1817–1862)

    When first we faced, and touching showed
    How well we knew the early moves ...
    Philip Larkin (1922–1986)

    The Thirties dreamed white marble and slipstream chrome, immortal crystal and burnished bronze, but the rockets on the Gernsback pulps had fallen on London in the dead of night, screaming. After the war, everyone had a car—no wings for it—and the promised superhighway to drive it down, so that the sky itself darkened, and the fumes ate the marble and pitted the miracle crystal.
    William Gibson (b. 1948)