Group Action - Continuous Group Actions

One often considers continuous group actions: the group G is a topological group, X is a topological space, and the map G × XX is continuous with respect to the product topology of G × X. The space X is also called a G-space in this case. This is indeed a generalization, since every group can be considered a topological group by using the discrete topology. All the concepts introduced above still work in this context, however we define morphisms between G-spaces to be continuous maps compatible with the action of G. The quotient X/G inherits the quotient topology from X, and is called the quotient space of the action. The above statements about isomorphisms for regular, free and transitive actions are no longer valid for continuous group actions.

If G is a discrete group acting on a topological space X, the action is properly discontinuous if for any point x in X there is an open neighborhood U of x in X, such that the set of all g in G for which consists of the identity only. If X is a regular covering space of another topological space Y, then the action of the deck transformation group on X is properly discontinuous as well as being free. Every free, properly discontinuous action of a group G on a path-connected topological space X arises in this manner: the quotient map XX/G is a regular covering map, and the deck transformation group is the given action of G on X. Furthermore, if X is simply connected, the fundamental group of X/G will be isomorphic to G.

These results have been generalised in the book Topology and Groupoids referenced below to obtain the fundamental groupoid of the orbit space of a discontinuous action of a discrete group on a Hausdorff space, as, under reasonable local conditions, the orbit groupoid of the fundamental groupoid of the space. This allows calculations such as the fundamental group of the symmetric square of a space X, namely the orbit space of the product of X with itself under the twist action of the cyclic group of order 2 sending (x, y) to (y, x).

An action of a group G on a locally compact space X is cocompact if there exists a compact subset A of X such that GA = X. For a properly discontinuous action, cocompactness is equivalent to compactness of the quotient space X/G.

The action of G on X is said to be proper if the mapping G×XX×X that sends (g,x)↦(g.x, x) is a proper map.

Read more about this topic:  Group Action

Famous quotes containing the words continuous, group and/or actions:

    I describe family values as responsibility towards others, increase of tolerance, compromise, support, flexibility. And essentially the things I call the silent song of life—the continuous process of mutual accommodation without which life is impossible.
    Salvador Minuchin (20th century)

    He hung out of the window a long while looking up and down the street. The world’s second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.
    John Dos Passos (1896–1970)

    Many of us, whether in the jungles of Asia or on the streets of Chicago, had discovered that noble causes can lead to ignoble actions and that we were capable of sacrificing honor to a sense of efficacy.
    Linda Grant (b. 1949)