Gradient Descent - Solution of A Non-linear System

Solution of A Non-linear System

Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x1, x2, and x3. This example shows one iteration of the gradient descent.

Consider a nonlinear system of equations:


\begin{cases}
3x_1-\cos(x_2x_3)-\tfrac{3}{2}=0 \\
4x_1^2-625x_2^2+2x_2-1=0 \\
\exp(-x_1x_2)+20x_3+\tfrac{10\pi-3}{3}=0
\end{cases}

suppose we have the function

 G(\mathbf{x}) = \begin{bmatrix}
3x_1-\cos(x_2x_3)-\tfrac{3}{2} \\
4x_1^2-625x_2^2+2x_2-1 \\
\exp(-x_1x_2)+20x_3+\tfrac{10\pi-3}{3} \\
\end{bmatrix}

where

 \mathbf{x} =\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\
\end{bmatrix}

and the objective function

With initial guess

 \mathbf{x}^{(0)}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\
\end{bmatrix}
=\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}

We know that

where

The Jacobian matrix


J_G = \begin{bmatrix} 3 & \sin(x_2x_3)x_3 & \sin(x_2x_3)x_2 \\ 8x_1 & -1250x_2+2 & 0 \\ -x_2\exp{(-x_1x_2)} & -x_1\exp(-x_1x_2) & 20\\
\end{bmatrix}

Then evaluating these terms at


J_G \left(\mathbf{x}^{(0)}\right) = \begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 20
\end{bmatrix}

and

 G(\mathbf{x}^{(0)}) = \begin{bmatrix} -2.5\\ -1\\ 10.472
\end{bmatrix}

So that

\mathbf{x}^{(1)}=0-\gamma_0 \begin{bmatrix} -7.5\\ -2\\ 209.44
\end{bmatrix}.

and


F \left(\mathbf{x}^{(0)}\right) = 0.5((-2.5)^2 + (-1)^2 + (10.472)^2) = 58.456

Now a suitable must be found such that . This can be done with any of a variety of line search algorithms. One might also simply guess which gives

 \mathbf{x}^{(1)}=\begin{bmatrix} 0.0075 \\ 0.002 \\ -0.20944 \\
\end{bmatrix}

evaluating at this value,


F \left(\mathbf{x}^{(1)}\right) = 0.5((-2.48)^2 + (-1.00)^2 + (6.28)^2) = 23.306

The decrease from to the next step's value of is a sizable decrease in the objective function. Further steps would reduce its value until a solution to the system was found.

Read more about this topic:  Gradient Descent

Famous quotes containing the words solution of, solution and/or system:

    I herewith commission you to carry out all preparations with regard to ... a total solution of the Jewish question in those territories of Europe which are under German influence.... I furthermore charge you to submit to me as soon as possible a draft showing the ... measures already taken for the execution of the intended final solution of the Jewish question.
    Hermann Goering (1893–1946)

    Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.
    Jane Rule (b. 1931)

    Books are for the most part willfully and hastily written, as parts of a system to supply a want real or imagined.
    Henry David Thoreau (1817–1862)