Galois Theory - Permutation Group Approach To Galois Theory

Permutation Group Approach To Galois Theory

Given a polynomial, it may be that some of the roots are connected by various algebraic equations. For example, it may be that for two of the roots, say A and B, that A2 + 5B3 = 7. The central idea of Galois theory is to consider those permutations (or rearrangements) of the roots having the property that any algebraic equation satisfied by the roots is still satisfied after the roots have been permuted. An important proviso is that we restrict ourselves to algebraic equations whose coefficients are rational numbers. (One might instead specify a certain field in which the coefficients should lie but, for the simple examples below, we will restrict ourselves to the field of rational numbers.)

These permutations together form a permutation group, also called the Galois group of the polynomial (over the rational numbers). To illustrate this point, consider the following examples:

Read more about this topic:  Galois Theory

Famous quotes containing the words group, approach and/or theory:

    A little group of willful men, representing no opinion but their own, have rendered the great government of the United States helpless and contemptible.
    Woodrow Wilson (1856–1924)

    The white man regards the universe as a gigantic machine hurtling through time and space to its final destruction: individuals in it are but tiny organisms with private lives that lead to private deaths: personal power, success and fame are the absolute measures of values, the things to live for. This outlook on life divides the universe into a host of individual little entities which cannot help being in constant conflict thereby hastening the approach of the hour of their final destruction.
    Policy statement, 1944, of the Youth League of the African National Congress. pt. 2, ch. 4, Fatima Meer, Higher than Hope (1988)

    Osteopath—One who argues that all human ills are caused by the pressure of hard bone upon soft tissue. The proof of his theory is to be found in the heads of those who believe it.
    —H.L. (Henry Lewis)