Galois Theory - Permutation Group Approach To Galois Theory

Permutation Group Approach To Galois Theory

Given a polynomial, it may be that some of the roots are connected by various algebraic equations. For example, it may be that for two of the roots, say A and B, that A2 + 5B3 = 7. The central idea of Galois theory is to consider those permutations (or rearrangements) of the roots having the property that any algebraic equation satisfied by the roots is still satisfied after the roots have been permuted. An important proviso is that we restrict ourselves to algebraic equations whose coefficients are rational numbers. (One might instead specify a certain field in which the coefficients should lie but, for the simple examples below, we will restrict ourselves to the field of rational numbers.)

These permutations together form a permutation group, also called the Galois group of the polynomial (over the rational numbers). To illustrate this point, consider the following examples:

Read more about this topic:  Galois Theory

Famous quotes containing the words group, approach and/or theory:

    With a group of bankers I always had the feeling that success was measured by the extent one gave nothing away.
    Francis Aungier, Pakenham, 7th Earl Longford (b. 1905)

    I approach these questions unwillingly, as it wounds, but no cure can be effected without touching upon and handling them.
    Titus Livius (Livy)

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)