Frobenius Algebra - Examples

Examples

  1. Any matrix algebra defined over a field k is a Frobenius algebra with Frobenius form σ(a,b)=tr(a·b) where tr denotes the trace.
  2. Any finite-dimensional unital associative algebra A has a natural homomorphism to its own endomorphism ring End(A). A bilinear form can be defined on A in the sense of the previous example. If this bilinear form is nondegenerate, then it equips A with the structure of a Frobenius algebra.
  3. Every group ring of a finite group over a field is a Frobenius algebra, with Frobenius form σ(a,b) the coefficient of the identity element in a·b. This is a special case of example 2.
  4. For a field k, the four-dimensional k-algebra k/ (x2, y2) is a Frobenius algebra in the sense of the second example.
  5. For a field k not of characteristic 2, the three-dimensional k-algebra k/ (x, y)2 is not a Frobenius algebra in the sense of the second example.

Read more about this topic:  Frobenius Algebra

Famous quotes containing the word examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)