Formal Power Series - Interpreting Formal Power Series As Functions

Interpreting Formal Power Series As Functions

In mathematical analysis, every convergent power series defines a function with values in the real or complex numbers. Formal power series can also be interpreted as functions, but one has to be careful with the domain and codomain. If f = ∑an Xn is an element of R], S is a commutative associative algebra over R, I is an ideal in S such that the I-adic topology on S is complete, and x is an element of I, then we can define


f(X) = \sum_{n\ge 0} a_n X^n.

This latter series is guaranteed to converge in S given the above assumptions on X. Furthermore, we have

and

Unlike in the case of bona fide functions, these formulas are not definitions but have to be proved.

Since the topology on R] is the (X)-adic topology and R] is complete, we can in particular apply power series to other power series, provided that the arguments don't have constant coefficients (so that they belong to the ideal (X)): f(0), f(X2−X) and f( (1 − X)−1 − 1) are all well defined for any formal power series fR].

With this formalism, we can give an explicit formula for the multiplicative inverse of a power series f whose constant coefficient a = f(0) is invertible in R:


f^{-1} = \sum_{n \ge 0} a^{-n-1} (a-f)^n.

If the formal power series g with g(0) = 0 is given implicitly by the equation


f(g) = X \,

where f is a known power series with f(0) = 0, then the coefficients of g can be explicitly computed using the Lagrange inversion formula.

Read more about this topic:  Formal Power Series

Famous quotes containing the words interpreting, formal, power, series and/or functions:

    Drawing is a struggle between nature and the artist, in which the better the artist understands the intentions of nature, the more easily he will triumph over it. For him it is not a question of copying, but of interpreting in a simpler and more luminous language.
    Charles Baudelaire (1821–1867)

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)

    Thy blood and virtue
    Contend for empire in thee, and thy goodness
    Share with thy birthright! Love all, trust a few,
    Do wrong to none. Be able for thine enemy
    Rather in power than use, and keep thy friend
    Under thy own life’s key. Be checked for silence
    But never taxed for speech.
    William Shakespeare (1564–1616)

    Every Age has its own peculiar faith.... Any attempt to translate into facts the mission of one Age with the machinery of another, can only end in an indefinite series of abortive efforts. Defeated by the utter want of proportion between the means and the end, such attempts might produce martyrs, but never lead to victory.
    Giuseppe Mazzini (1805–1872)

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    Edward T. Hall (b. 1914)