Finite-difference Time-domain Method - Grid Truncation Techniques For Open-region FDTD Modeling Problems

Grid Truncation Techniques For Open-region FDTD Modeling Problems

The most commonly used grid truncation techniques for open-region FDTD modeling problems are the Mur absorbing boundary condition (ABC), the Liao ABC, and various perfectly matched layer (PML) formulations. The Mur and Liao techniques are simpler than PML. However, PML (which is technically an absorbing region rather than a boundary condition per se) can provide orders-of-magnitude lower reflections. The PML concept was introduced by J.-P. Berenger in a seminal 1994 paper in the Journal of Computational Physics. Since 1994, Berenger's original split-field implementation has been modified and extended to the uniaxial PML (UPML), the convolutional PML (CPML), and the higher-order PML. The latter two PML formulations have increased ability to absorb evanescent waves, and therefore can in principle be placed closer to a simulated scattering or radiating structure than Berenger's original formulation.

To reduce undesired numerical reflection from the PML additional back absorbing layers technique can be used.

Read more about this topic:  Finite-difference Time-domain Method

Famous quotes containing the words techniques, modeling and/or problems:

    It is easy to lose confidence in our natural ability to raise children. The true techniques for raising children are simple: Be with them, play with them, talk to them. You are not squandering their time no matter what the latest child development books say about “purposeful play” and “cognitive learning skills.”
    Neil Kurshan (20th century)

    The computer takes up where psychoanalysis left off. It takes the ideas of a decentered self and makes it more concrete by modeling mind as a multiprocessing machine.
    Sherry Turkle (b. 1948)

    The problems of this world are only truly solved in two ways: by extinction or duplication.
    Susan Sontag (b. 1933)