Finite-difference Time-domain Method

Finite-difference Time-domain Method

Finite-difference time-domain (FDTD) is a numerical analysis technique used for modeling computational electrodynamics (finding approximate solutions to the associated system of differential equations). Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run, and treat nonlinear material properties in a natural way.

The FDTD method belongs in the general class of grid-based differential time-domain numerical modeling methods. The time-dependent Maxwell's equations (in partial differential form) are discretized using central-difference approximations to the space and time partial derivatives. The resulting finite-difference equations are solved in either software or hardware in a leapfrog manner: the electric field vector components in a volume of space are solved at a given instant in time; then the magnetic field vector components in the same spatial volume are solved at the next instant in time; and the process is repeated over and over again until the desired transient or steady-state electromagnetic field behavior is fully evolved.

The basic FDTD space grid and time-stepping algorithm trace back to a seminal 1966 paper by Kane Yee in IEEE Transactions on Antennas and Propagation. The descriptor "Finite-difference time-domain" and its corresponding "FDTD" acronym were originated by Allen Taflove in a 1980 paper in IEEE Transactions on Electromagnetic Compatibility.

Since about 1990, FDTD techniques have emerged as primary means to computationally model many scientific and engineering problems dealing with electromagnetic wave interactions with material structures. Current FDTD modeling applications range from near-DC (ultralow-frequency geophysics involving the entire Earth-ionosphere waveguide) through microwaves (radar signature technology, antennas, wireless communications devices, digital interconnects, biomedical imaging/treatment) to visible light (photonic crystals, nanoplasmonics, solitons, and biophotonics). In 2006, an estimated 2,000 FDTD-related publications appeared in the science and engineering literature (see Popularity). At present (2008), there are at least 27 commercial/proprietary FDTD software vendors; 8 free-software/open-source-software FDTD projects; and 2 freeware/closed-source FDTD projects, some not for commercial use (see External links).

Read more about Finite-difference Time-domain Method:  Workings of The FDTD Method, Using The FDTD Method, Strengths of FDTD Modeling, Weaknesses of FDTD Modeling, Grid Truncation Techniques For Open-region FDTD Modeling Problems, History of FDTD Techniques and Applications For Maxwell's Equations, Popularity

Famous quotes containing the word method:

    Methinks the human method of expression by sound of tongue is very elementary, & ought to be substituted for some ingenious invention which should be able to give vent to at least six coherent sentences at once.
    Virginia Woolf (1882–1941)