Estimation of Covariance Matrices - Shrinkage Estimation

Shrinkage Estimation

If the sample size n is small and the number of considered variables p is large, the above empirical estimators of covariance and correlation are very unstable. Specifically, it is possible to furnish estimators that improve considerably upon the maximum likelihood estimate in terms of mean squared error. Moreover, for n < p, the empirical estimate of the covariance matrix becomes singular, i.e. it cannot be inverted to compute the precision matrix.

As an alternative, many methods have been suggested to improve the estimation of the covariance matrix. All of these approaches rely on the concept of shrinkage. This is implicit in Bayesian methods and in penalized maximum likelihood methods and explicit in the Stein-type shrinkage approach.

A simple version of a shrinkage estimator of the covariance matrix is constructed as follows. One considers a convex combination of the empirical estimator with some suitable chosen target, e.g., the diagonal matrix. Subsequently, the mixing parameter is selected to maximize the expected accuracy of the shrunken estimator. This can be done by cross-validation, or by using an analytic estimate of the shrinkage intensity. The resulting regularized estimator can be shown to outperform the maximum likelihood estimator for small samples. For large samples, the shrinkage intensity will reduce to zero, hence in this case the shrinkage estimator will be identical to the empirical estimator. Apart from increased efficiency the shrinkage estimate has the additional advantage that it is always positive definite and well conditioned.

A review on this topic is given, e.g., in Schäfer and Strimmer 2005. A covariance shrinkage estimator is implemented in the R package "corpcor".

Read more about this topic:  Estimation Of Covariance Matrices

Famous quotes containing the word estimation:

    ... it would be impossible for women to stand in higher estimation than they do here. The deference that is paid to them at all times and in all places has often occasioned me as much surprise as pleasure.
    Frances Wright (1795–1852)