Discrete Fourier Transform - Some Discrete Fourier Transform Pairs

Some Discrete Fourier Transform Pairs

Some DFT pairs
Note
Shift theorem
Real DFT
\left\{ \begin{matrix} N & \mbox{if } a = e^{i 2 \pi k/N} \\ \frac{1-a^N}{1-a \, e^{-i 2 \pi k/N} } & \mbox{otherwise} \end{matrix} \right. from the geometric progression formula
from the binomial theorem
\left\{ \begin{matrix} \frac{1}{W} & \mbox{if } 2n < W \mbox{ or } 2(N-n) < W \\ 0 & \mbox{otherwise} \end{matrix} \right. \left\{ \begin{matrix} 1 & \mbox{if } k = 0 \\ \frac{\sin\left(\frac{\pi W k}{N}\right)} {W \sin\left(\frac{\pi k}{N}\right)} & \mbox{otherwise} \end{matrix} \right. is a rectangular window function of W points centered on n=0, where W is an odd integer, and is a sinc-like function (specifically, is a Dirichlet kernel)
Discretization and periodic summation of the scaled Gaussian functions for . Since either or is larger than one and thus warrants fast convergence of one of the two series, for large you may choose to compute the frequency spectrum and convert to the time domain using the discrete Fourier transform.

Read more about this topic:  Discrete Fourier Transform

Famous quotes containing the words discrete and/or transform:

    The mastery of one’s phonemes may be compared to the violinist’s mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbor’s renderings indulgently, mentally rectifying the more glaring inaccuracies.
    W.V. Quine (b. 1908)

    Americans, unhappily, have the most remarkable ability to alchemize all bitter truths into an innocuous but piquant confection and to transform their moral contradictions, or public discussion of such contradictions, into a proud decoration, such as are given for heroism on the battle field.
    James Baldwin (1924–1987)