Directional Derivative - Definition

Definition

The directional derivative of a scalar function

along a vector

is the function defined by the limit

If the function f is differentiable at x, then the directional derivative exists along any vector v, and one has

where the on the right denotes the gradient and is the dot product. At any point x, the directional derivative of f intuitively represents the rate of change in moving at a rate and direction given by v at the point x.

Some authors define the directional derivative to be with respect to the vector v after normalization, thus ignoring its magnitude. In this case, one has

or in case f is differentiable at x,

This definition has several disadvantages: it only applies when the norm of a vector is defined and the vector is not null. It is also incompatible with notation used elsewhere in mathematics, where the space of derivations in a derivation algebra is expected to be a vector space.

Read more about this topic:  Directional Derivative

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)