Diaconescu's Theorem - Proof

Proof

For any proposition, we can build the sets

and

These are sets, using the axiom of specification. In classical set theory this would be equivalent to

and similarly for . However, without the law of the excluded middle, these equivalences cannot be proven; in fact the two sets are not even provably finite (in the usual sense of being in bijection with a natural number, though they would be in the Dedekind sense).

Assuming the axiom of choice, there exists a choice function for the set ; that is, a function such that

By the definition of the two sets, this means that

,

which implies

But since (by the axiom of extensionality), therefore, so

Thus As this could be done for any proposition, this completes the proof that the axiom of choice implies the law of the excluded middle.

The proof relies on the use of the full separation axiom. In constructive set theories with only the predicative separation, the form of P will be restricted to sentences with bound quantifiers only, giving only a restricted form of the law of the excluded middle. This restricted form is still not acceptable constructively.

In constructive type theory, or in Heyting arithmetic extended with finite types, there is typically no separation at all - subsets of a type are given different treatments. A form of the axiom of choice is a theorem, yet excluded middle is not.

Read more about this topic:  Diaconescu's Theorem

Famous quotes containing the word proof:

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)

    When children feel good about themselves, it’s like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.
    Stephanie Martson (20th century)