Determination of Equilibrium Constants

Determination Of Equilibrium Constants

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant is expressed as a concentration quotient,

it is implied that the activity quotient is constant. In order for this assumption to be valid equilibrium constants should be determined in a medium of relatively high ionic strength. Where this is not possible, consideration should be given to possible activity variation.

The equilibrium expression above is a function of the concentrations, etc. of the chemical species in equilibrium. The equilibrium constant value can be determined if any one of these concentrations can be measured. The general procedure is that the concentration in question is measured for a series of solutions with known analytical concentrations of the reactants. Typically, a titration is performed with one or more reactants in the titration vessel and one or more reactants in the burette. Knowing the analytical concentrations of reactants initially in the reaction vessel and in the burette, all analytical concentrations can be derived as a function of the volume (or mass) of titrant added.

The equilibrium constants may be derived by best-fitting of the experimental data with a chemical model of the equilibrium system.

Read more about Determination Of Equilibrium Constants:  Experimental Methods, Computational Methods, Implementations

Famous quotes containing the words determination of and/or equilibrium:

    War should be carried on like a monsoon; one changeless determination of every particle towards the one unalterable aim.
    Herman Melville (1819–1891)

    That doctrine [of peace at any price] has done more mischief than any I can well recall that have been afloat in this country. It has occasioned more wars than any of the most ruthless conquerors. It has disturbed and nearly destroyed that political equilibrium so necessary to the liberties and the welfare of the world.
    Benjamin Disraeli (1804–1881)