De Morgan's Laws - Formal Proof

Formal Proof

The laws may be proven directly using truth tables; "1" represents true, "0" represents false.

First we prove: ¬(pq) ⇔ (¬p) ∧ (¬q).

p q pq ¬(pq) ¬p ¬q p) ∧ (¬q)
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

Since the values in the 4th and last columns are the same for all rows (which cover all possible truth value assignments to the variables), we can conclude that the two expressions are logically equivalent.

Now we prove ¬(pq) ⇔ (¬p) ∨ (¬q) by the same method:

p q pq ¬(pq) ¬p ¬q p) ∨ (¬q)
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

Read more about this topic:  De Morgan's Laws

Famous quotes containing the words formal and/or proof:

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)