Regular and Singular Ordinals
A regular ordinal is an ordinal which is equal to its cofinality. A singular ordinal is any ordinal which is not regular.
Every regular ordinal is the initial ordinal of a cardinal. Any limit of regular ordinals is a limit of initial ordinals and thus is also initial but need not be regular. Assuming the Axiom of choice, is regular for each α. In this case, the ordinals 0, 1, and are regular, whereas 2, 3, and ωω·2 are initial ordinals which are not regular.
The cofinality of any ordinal α is a regular ordinal, i.e. the cofinality of the cofinality of α is the same as the cofinality of α. So the cofinality operation is idempotent.
Read more about this topic: Cofinality
Famous quotes containing the words regular and/or singular:
“They were regular in being gay, they learned little things that are things in being gay, they learned many little things that are things in being gay, they were gay every day, they were regular, they were gay, they were gay the same length of time every day, they were gay, they were quite regularly gay.”
—Gertrude Stein (18741946)
“The spider-mind acquires a faculty of memory, and, with it, a singular skill of analysis and synthesis, taking apart and putting together in different relations the meshes of its trap. Man had in the beginning no power of analysis or synthesis approaching that of the spider, or even of the honey-bee; but he had acute sensibility to the higher forces.”
—Henry Brooks Adams (18381918)