Cofinality of Ordinals and Other Well-ordered Sets
The cofinality of an ordinal α is the smallest ordinal δ which is the order type of a cofinal subset of α. The cofinality of a set of ordinals or any other well-ordered set is the cofinality of the order type of that set.
Thus for a limit ordinal, there exists a δ-indexed strictly increasing sequence with limit α. For example, the cofinality of ω² is ω, because the sequence ω·m (where m ranges over the natural numbers) tends to ω²; but, more generally, any countable limit ordinal has cofinality ω. An uncountable limit ordinal may have either cofinality ω as does ωω or an uncountable cofinality.
The cofinality of 0 is 0. The cofinality of any successor ordinal is 1. The cofinality of any limit ordinal is at least ω.
Read more about this topic: Cofinality
Famous quotes containing the word sets:
“Music sets up ladders,
it makes us invisible,
it sets us apart,
it lets us escape;
but from the visible
there is no escape.”
—Hilda Doolittle (18861961)