Cofinality - Cofinality of Ordinals and Other Well-ordered Sets

Cofinality of Ordinals and Other Well-ordered Sets

The cofinality of an ordinal α is the smallest ordinal δ which is the order type of a cofinal subset of α. The cofinality of a set of ordinals or any other well-ordered set is the cofinality of the order type of that set.

Thus for a limit ordinal, there exists a δ-indexed strictly increasing sequence with limit α. For example, the cofinality of ω² is ω, because the sequence ω·m (where m ranges over the natural numbers) tends to ω²; but, more generally, any countable limit ordinal has cofinality ω. An uncountable limit ordinal may have either cofinality ω as does ωω or an uncountable cofinality.

The cofinality of 0 is 0. The cofinality of any successor ordinal is 1. The cofinality of any limit ordinal is at least ω.

Read more about this topic:  Cofinality

Famous quotes containing the word sets:

    There be some sports are painful, and their labor
    Delight in them sets off. Some kinds of baseness
    Are nobly undergone, and most poor matters
    Point to rich ends.
    William Shakespeare (1564–1616)