Club Set - Formal Definition

Formal Definition

Formally, if is a limit ordinal, then a set is closed in if and only if for every, if, then . Thus, if the limit of some sequence in is less than, then the limit is also in .

If is a limit ordinal and then is unbounded in if and only if for any, there is some such that .

If a set is both closed and unbounded, then it is a club set. Closed proper classes are also of interest (every proper class of ordinals is unbounded in the class of all ordinals).

For example, the set of all countable limit ordinals is a club set with respect to the first uncountable ordinal; but it is not a club set with respect to any higher limit ordinal, since it is neither closed nor unbounded. The set of all limit ordinals is closed unbounded in ( regular). In fact a club set is nothing else but the range of a normal function (i.e. increasing and continuous).

Read more about this topic:  Club Set

Famous quotes containing the words formal and/or definition:

    The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.
    Edgar Lee Masters (1869–1950)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)