Relationship To Index-free Notation
Let X and Y be vector fields with components and . Then the kth component of the covariant derivative of Y with respect to X is given by
Here, the Einstein notation is used, so repeated indices indicate summation over indices and contraction with the metric tensor serves to raise and lower indices:
Keep in mind that and that, the Kronecker delta. The convention is that the metric tensor is the one with the lower indices; the correct way to obtain from is to solve the linear equations .
The statement that the connection is torsion-free, namely that
is equivalent to the statement that —in a coordinate basis— the Christoffel symbol is symmetric in the lower two indices:
The index-less transformation properties of a tensor are given by pullbacks for covariant indices, and pushforwards for contravariant indices. The article on covariant derivatives provides additional discussion of the correspondence between index-free notation and indexed notation.
Read more about this topic: Christoffel Symbols
Famous quotes containing the word relationship:
“The proper aim of education is to promote significant learning. Significant learning entails development. Development means successively asking broader and deeper questions of the relationship between oneself and the world. This is as true for first graders as graduate students, for fledging artists as graying accountants.”
—Laurent A. Daloz (20th century)