Chemical Potential - in Particle Physics

In Particle Physics

In recent years, thermal physics has applied the definition of chemical potential to systems in particle physics and its associated processes. For example, in a quark-gluon plasma or other QCD matter, at every point in space there is a chemical potential for photons, a chemical potential for electrons, a chemical potential for baryon number, electric charge, and so forth.

In the case of photons, photons are bosons and can very easily and rapidly appear or disappear. Therefore the chemical potential of photons is always and everywhere zero. The reason is, if the chemical potential somewhere was higher than zero, photons would spontaneously disappear from that area until the chemical potential went back to zero; likewise if the chemical potential somewhere was less than zero, photons would spontaneously appear until the chemical potential went back to zero. Since this process occurs extremely rapidly (at least, it occurs rapidly in the presence of dense charged matter), it is safe to assume that the photon chemical potential is never different from zero.

Electric charge is different, because it is conserved, i.e. it can be neither created nor destroyed. It can, however, diffuse. The "chemical potential of electric charge" controls this diffusion: Electric charge, like anything else, will tend to diffuse from areas of higher chemical potential to areas of lower chemical potential. Other conserved quantities like baryon number are the same. In fact, each conserved quantity is associated with a chemical potential and a corresponding tendency to diffuse to equalize it out.

In the case of electrons, the behavior depends on temperature and context. At low temperatures, with no positrons present, electrons cannot be created or destroyed. Therefore there is an electron chemical potential that might vary in space, causing diffusion. At very high temperatures, however, electrons and positrons can spontaneously appear out of the vacuum (pair production), so the chemical potential of electrons by themselves becomes a less useful quantity than the chemical potential of the conserved quantities like (electrons minus positrons).

The chemical potentials of bosons and fermions is related to the number of particles and the temperature by Bose–Einstein statistics and Fermi–Dirac statistics respectively.

Read more about this topic:  Chemical Potential

Famous quotes containing the words particle and/or physics:

    You don’t hold any mystery for me, darling, do you mind? There isn’t a particle of you that I don’t know, remember, and want.
    Noël Coward (1899–1973)

    ... it is as true in morals as in physics that all force is imperishable; therefore the consequences of a human action never cease.
    Tennessee Claflin (1846–1923)