Proof Sketch For The First Theorem
The proof by contradiction has three essential parts. To begin, choose a formal system that meets the proposed criteria:
- Statements in the system can be represented by natural numbers (known as Gödel numbers). The significance of this is that properties of statements—such as their truth and falsehood—will be equivalent to determining whether their Gödel numbers have certain properties, and that properties of the statements can therefore be demonstrated by examining their Gödel numbers. This part culminates in the construction of a formula expressing the idea that "statement S is provable in the system" (which can be applied to any statement "S" in the system).
- In the formal system it is possible to construct a number whose matching statement, when interpreted, is self-referential and essentially says that it (i.e. the statement itself) is unprovable. This is done using a technique called "diagonalization" (so-called because of its origins as Cantor's diagonal argument).
- Within the formal system this statement permits a demonstration that it is neither provable nor disprovable in the system, and therefore the system cannot in fact be ω-consistent. Hence the original assumption that the proposed system met the criteria is false.
Read more about this topic: Bew
Famous quotes containing the words proof, sketch and/or theorem:
“a meek humble Man of modest sense,
Who preaching peace does practice continence;
Whose pious lifes a proof he does believe,
Mysterious truths, which no Man can conceive.”
—John Wilmot, 2d Earl Of Rochester (16471680)
“We criticize a man or a book most sharply when we sketch out their ideal.”
—Friedrich Nietzsche (18441900)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
Related Phrases
Related Words