Algebraic Number Theory - Basic Notions - Primes and Places

Primes and Places

An important generalization of the notion of prime ideal in O is obtained by passing from the so-called ideal-theoretic approach to the so-called valuation-theoretic approach. The relation between the two approaches arises as follows. In addition to the usual absolute value function |·| : QR, there are absolute value functions |·|p : QR defined for each prime number p in Z, called p-adic absolute values. Ostrowski's theorem states that these are all possible absolute value functions on Q (up to equivalence). This suggests that the usual absolute value could be considered as another prime. More generally, a prime of an algebraic number field K (also called a place) is an equivalence class of absolute values on K. The primes in K are of two sorts: -adic absolute values like |·|p, one for each prime ideal of O, and absolute values like |·| obtained by considering K as a subset of the complex numbers in various possible ways and using the absolute value |·| : CR. A prime of the first kind is called a finite prime (or finite place) and one of the second kind is called an infinite prime (or infinite place). Thus, the set of primes of Q is generally denoted { 2, 3, 5, 7, ..., ∞ }, and the usual absolute value on Q is often denoted |·| in this context.

The set of infinite primes of K can be described explicitly in terms of the embeddings KC (i.e. the non-zero ring homomorphisms from K to C). Specifically, the set of embeddings can be split up into two disjoint subsets, those whose image is contained in R, and the rest. To each embedding σ : KR, there corresponds a unique prime of K coming from the absolute value obtained by composing σ with the usual absolute value on R; a prime arising in this fashion is called a real prime (or real place). To an embedding τ : KC whose image is not contained in R, one can construct a distinct embedding τ, called the conjugate embedding, by composing τ with the complex conjugation map CC. Given such a pair of embeddings τ and τ, there corresponds a unique prime of K again obtained by composing τ with the usual absolute value (composing τ instead gives the same absolute value function since |z| = |z| for any complex number z, where z denotes the complex conjugate of z). Such a prime is called a complex prime (or complex place). The description of the set of infinite primes is then as follows: each infinite prime corresponds either to a unique embedding σ : KR, or a pair of conjugate embeddings τ, τ : KC. The number of real (respectively, complex) primes is often denoted r1 (respectively, r2). Then, the total number of embeddings KC is r1+2r2 (which, in fact, equals the degree of the extension K/Q).

Read more about this topic:  Algebraic Number Theory, Basic Notions

Famous quotes containing the word places:

    ... it would be impossible for women to stand in higher estimation than they do here. The deference that is paid to them at all times and in all places has often occasioned me as much surprise as pleasure.
    Frances Wright (1795–1852)