Adaptive Simpson's Method

Adaptive Simpson's method, also called adaptive Simpson's rule, is a method of numerical integration proposed by G.F. Kuncir in 1962. It is probably the first recursive adaptive algorithm for numerical integration to appear in print, although more modern adaptive methods based on Gauss–Kronrod quadrature and Clenshaw–Curtis quadrature are now generally preferred. Adaptive Simpson's method uses an estimate of the error we get from calculating a definite integral using Simpson's rule. If the error exceeds a user-specified tolerance, the algorithm calls for subdividing the interval of integration in two and applying adaptive Simpson's method to each subinterval in a recursive manner. The technique is usually much more efficient than composite Simpson's rule since it uses fewer function evaluations in places where the function is well-approximated by a cubic function.

A criterion for determining when to stop subdividing an interval, suggested by J.N. Lyness, is

where is an interval with midpoint, and are the estimates given by Simpson's rule on the corresponding intervals and is the desired tolerance for the interval.

Simpson's rule is an interpolatory quadrature rule which is exact when the integrand is a polynomial of degree three or lower. Using Richardson extrapolation, the more accurate Simpson estimate for six function values is combined with the less accurate estimate for three function values by applying the correction . The thus obtained estimate is exact for polynomials of degree five or less.

Famous quotes containing the words adaptive, simpson and/or method:

    The shift from the perception of the child as innocent to the perception of the child as competent has greatly increased the demands on contemporary children for maturity, for participating in competitive sports, for early academic achievement, and for protecting themselves against adults who might do them harm. While children might be able to cope with any one of those demands taken singly, taken together they often exceed children’s adaptive capacity.
    David Elkind (20th century)

    The treasures of Cathay were never found.
    In this America, this wilderness
    Where the axe echoes with a lonely sound,
    The generations labor to possess
    And grave by grave we civilize the ground.
    —Louis Simpson (b. 1923)

    If all feeling for grace and beauty were not extinguished in the mass of mankind at the actual moment, such a method of locomotion as cycling could never have found acceptance; no man or woman with the slightest aesthetic sense could assume the ludicrous position necessary for it.
    Ouida [Marie Louise De La Ramée] (1839–1908)