Proof
In general, for any finite group G of order n, it is easy to determine the signature of the permutation πg made by left-multiplication by the element g of G. The permutation πg will be even, unless there are an odd number of orbits of even size. Assuming n even, therefore, the condition for πg to be an odd permutation, when g has order k, is that n/k should be odd, or that the subgroup <g> generated by g should have odd index.
We will apply this to the group of nonzero numbers mod p, which is a cyclic group of order p − 1. The jth power of a primitive root modulo p will by index calculus have index the greatest common divisor
- i = (j, p − 1).
The condition for a nonzero number mod p to be an quadratic non-residue is to be an odd power of a primitive root. The lemma therefore comes down to saying that i is odd when j is odd, which is true a fortiori, and j is odd when i is odd, which is true because p − 1 is even (p is odd).
Read more about this topic: Zolotarev's Lemma
Famous quotes containing the word proof:
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)
“The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.”
—Andrew Michael Ramsay (16861743)
“Talk shows are proof that conversation is dead.”
—Mason Cooley (b. 1927)