Existence of Zeros
The fundamental theorem of algebra says that every nonconstant polynomial with complex coefficients has at least one zero in the complex plane. This is in contrast to the situation with real zeros: some polynomial functions with real coefficients have no real zeros. An example is f(x) = x2 + 1.
Read more about this topic: Zero (complex Analysis)
Famous quotes containing the words existence of and/or existence:
“The Frenchman Jean-Paul ... Sartre I remember now was his last name had a dialectical mind good as a machine for cybernetics, immense in its way, he could peel a nuance like an onion, but he had no sense of evil, the anguish of God, and the possible existence of Satan.”
—Norman Mailer (b. 1923)
“Justice begins with the recognition of the necessity of sharing. The oldest law is that which regulates it, and this is still the most important law today and, as such, has remained the basic concern of all movements which have at heart the community of human activities and of human existence in general.”
—Elias Canetti (b. 1905)