Zariski's Main Theorem - Zariski's Main Theorem For Commutative Rings

Zariski's Main Theorem For Commutative Rings

Zariski (1949) reformulated his main theorem in terms of commutative algebra as a statement about local rings. Grothendieck (1961, Théorème 4.4.7) generalized Zariski's formulation as follows:

If B is an algebra of finite type over a local Noetherian ring A, and n is a maximal ideal of B which is minimal among ideals of B whose inverse image in A is the maximal ideal m of A, then there is a finite A-algebra A′ with a maximal ideal m′ (whose inverse image in A is m) such that the localization Bn is isomorphic to the A-algebra Am.

If in addition A and B are integral and have the same field of fractions, and A is integrally closed, then this theorem implies that A and B are equal. This is essentially Zariski's formulation of his main theorem in terms of commutative rings.

Read more about this topic:  Zariski's Main Theorem

Famous quotes containing the words main, theorem and/or rings:

    Whether or not his newspaper and a set of senses reduced to five are the main sources of the so-called “real life” of the so- called average man, one thing is fortunately certain: namely, that the average man himself is but a piece of fiction, a tissue of statistics.
    Vladimir Nabokov (1899–1977)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    We will have rings and things, and fine array,
    And kiss me, Kate, we will be married o’ Sunday.
    William Shakespeare (1564–1616)