Zariski Topology - The Classical Definition

The Classical Definition

In classical algebraic geometry (that is, the subject prior to the Grothendieck revolution of the late 1950s and 1960s) the Zariski topology was defined in the following way. Just as the subject itself was divided into the study of affine and projective varieties (see the Algebraic variety definitions) the Zariski topology is defined slightly differently for these two. We assume that we are working over a fixed, algebraically closed field k, which in classical geometry was almost always the complex numbers.

Read more about this topic:  Zariski Topology

Famous quotes containing the words classical and/or definition:

    Compare the history of the novel to that of rock ‘n’ roll. Both started out a minority taste, became a mass taste, and then splintered into several subgenres. Both have been the typical cultural expressions of classes and epochs. Both started out aggressively fighting for their share of attention, novels attacking the drama, the tract, and the poem, rock attacking jazz and pop and rolling over classical music.
    W. T. Lhamon, U.S. educator, critic. “Material Differences,” Deliberate Speed: The Origins of a Cultural Style in the American 1950s, Smithsonian (1990)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)