Zariski Tangent Space - Definition

Definition

The cotangent space of a local ring R, with maximal ideal m is defined to be

m/m2

It is a vector space over the residue field k := R/m. Its dual (as a k-vector space) is called tangent space of R.

This definition is a generalization of the above example to higher dimensions: suppose given an affine algebraic variety V and a point v of V. Morally, modding out m2 corresponds to dropping the non-linear terms from the equations defining V inside some affine space, therefore giving a system of linear equations that define the tangent space.

(One often defines the tangent and cotangent spaces for a manifold in the analogous manner.)

Read more about this topic:  Zariski Tangent Space

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)