Invariants Used To Describe Yield Surfaces
The first principal invariant of the Cauchy stress, and the second and third principal invariants of the deviatoric part of the Cauchy stress are defined as:
where are the principal values of are the principal values of, and
where is the identity matrix.
A related set of quantities, are usually used to describe yield surfaces for cohesive frictional materials such as rocks, soils, and ceramics. These are defined as
where is the equivalent stress. However, the possibility of negative values of and the resulting imaginary makes the use of these quantities problematic in practice.
Another related set of widely used invariants is which describe a cylindrical coordinate system (the Haigh–Westergaard coordinates). These are defined as:
The plane is also called the Rendulic plane. The angle is called the Lode angle and the relation between and was first given by Nayak and Zienkiewicz in 1972
The principal stresses and the Haigh–Westergaard coordinates are related by
A different definition of the Lode angle can also be found in the literature:
in which case
Whatever definition is chosen, the angle varies between 0 degrees to +60 degrees.
Read more about this topic: Yield Surface
Famous quotes containing the words describe, yield and/or surfaces:
“How feeble is all language to describe the horrors we inflict upon these wretches, whom we mason up in the cells of our prisons, and condemn to perpetual solitude in the very heart of our population.”
—Herman Melville (18191891)
“Time is here and youll go his way.
Your lung is waiting in the death market.
Your face beside me will grow indifferent.
Darling, you will yield up your belly and be
cored like an apple.”
—Anne Sexton (19281974)
“But ice-crunching and loud gum-chewing, together with drumming on tables, and whistling the same tune seventy times in succession, because they indicate an indifference on the part of the perpetrator to the rest of the world in general, are not only registered on the delicate surfaces of the brain but eat little holes in it until it finally collapses or blows up.”
—Robert Benchley (18891945)