Yamabe Flow

In differential geometry, the Yamabe flow is an intrinsic geometric flow—a process which deforms the metric of a Riemannian manifold. It is the negative L2-gradient flow of the (normalized) total scalar curvature, restricted to a given conformal class: it can be interpreted as deforming a Riemannian metric to a conformal metric of constant scalar curvature, when this flow converges.

It was introduced by Richard Hamilton shortly after the Ricci flow, as an approach to solve the Yamabe problem on manifolds of positive conformal Yamabe invariant.

Famous quotes containing the word flow:

    I candidly confess that I have ever looked on Cuba as the most interesting addition which could ever be made to our system of States. The control which, with Florida, this island would give us over the Gulf of Mexico, and the countries and isthmus bordering on it, as well as all those whose waters flow into it, would fill up the measure of our political well-being.
    Thomas Jefferson (1743–1826)