Word (group Theory) - Normal Forms

Normal Forms

A normal form for a group G with generating set S is a choice of one reduced word in S for each element of G. For example:

  • The words 1, i, j, ij are a normal form for the Klein four-group.
  • The words 1, r, r2, ..., rn-1, s, sr, ..., srn-1 are a normal form for the dihedral group Dihn.
  • The set of reduced words in S are a normal form for the free group over S.
  • The set of words of the form xmyn for m,nZ are a normal form for the direct product of the cyclic groups 〈x〉 and 〈y〉.

Read more about this topic:  Word (group Theory)

Famous quotes containing the words normal and/or forms:

    Literature is a defense against the attacks of life. It says to life: “You can’t deceive me. I know your habits, foresee and enjoy watching all your reactions, and steal your secret by involving you in cunning obstructions that halt your normal flow.”
    Cesare Pavese (1908–1950)

    We find the most terrible form of atheism, not in the militant and passionate struggle against the idea of God himself, but in the practical atheism of everyday living, in indifference and torpor. We often encounter these forms of atheism among those who are formally Christians.
    Nicolai A. Berdyaev (1874–1948)