Woodbury Matrix Identity

In mathematics (specifically linear algebra), the Woodbury matrix identity, named after Max A. Woodbury says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix. Alternative names for this formula are the matrix inversion lemma, Sherman–Morrison–Woodbury formula or just Woodbury formula. However, the identity appeared in several papers before the Woodbury report.

The Woodbury matrix identity is

where A, U, C and V all denote matrices of the correct size. Specifically, A is n-by-n, U is n-by-k, C is k-by-k and V is k-by-n. This can be derived using blockwise matrix inversion.

In the special case where C is the 1-by-1 unit matrix, this identity reduces to the Sherman–Morrison formula. In the special case when C is the identity matrix I, the matrix is known in numerical linear algebra and numerical partial differential equations as the capacitance matrix.

Read more about Woodbury Matrix Identity:  Derivation Via Blockwise Elimination, Derivation From LDU Decomposition, Direct Proof, Applications

Famous quotes containing the words matrix and/or identity:

    In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.
    Salvador Minuchin (20th century)

    Growing has no connection with audience. / Audience has no
    connection with identity. / Identity has no
    connection with a universe. / A universe has no
    connection with human nature.
    Gertrude Stein (1874–1946)