Wigner Quasiprobability Distribution - Relation To Classical Mechanics

Relation To Classical Mechanics

A classical particle has a definite position and momentum, and hence it is represented by a point in phase space. Given a collection (ensemble) of particles, the probability of finding a particle at a certain position in phase space is specified by a probability distribution, the Liouville density. This strict interpretation fails for a quantum particle, due to the uncertainty principle. Instead, the above quasiprobability Wigner distribution plays an analogous role, but does not satisfy all the properties of a conventional probability distribution; and, conversely, satisfies boundedness properties unavailable to classical distributions.

For instance, the Wigner distribution can and normally does go negative for states which have no classical model—and is a convenient indicator of quantum mechanical interference. Smoothing the Wigner distribution through a filter of size larger than ħ (e.g., convolving with a phase-space Gaussian to yield the Husimi representation, below), results in a positive-semidefinite function, i.e., it may be thought to have been coarsened to a semi-classical one. (Specifically, since this convolution is invertible, in fact, no information has been sacrificed, and the full quantum entropy has not increased, yet. However, if this resulting Husimi distribution is then used as a plain measure in a phase-space integral evaluation of expectation values without the requisite star product of the Husimi representation, then, at that stage, quantum information has been forfeited and the distribution is a semi-classical one, effectively. That is, depending on its usage in evaluating expectation values, the very same distribution may serve as a quantum or a classical distribution function.)

Regions of such negative value are provable (by convolving them with a small Gaussian) to be "small": they cannot extend to compact regions larger than a few ħ, and hence disappear in the classical limit. They are shielded by the uncertainty principle, which does not allow precise location within phase-space regions smaller than ħ, and thus renders such "negative probabilities" less paradoxical.

Read more about this topic:  Wigner Quasiprobability Distribution

Famous quotes containing the words relation to, relation, classical and/or mechanics:

    We must get back into relation, vivid and nourishing relation to the cosmos and the universe. The way is through daily ritual, and is an affair of the individual and the household, a ritual of dawn and noon and sunset, the ritual of the kindling fire and pouring water, the ritual of the first breath, and the last.
    —D.H. (David Herbert)

    Hesitation increases in relation to risk in equal proportion to age.
    Ernest Hemingway (1899–1961)

    The basic difference between classical music and jazz is that in the former the music is always greater than its performance—Beethoven’s Violin Concerto, for instance, is always greater than its performance—whereas the way jazz is performed is always more important than what is being performed.
    André Previn (b. 1929)

    the moderate Aristotelian city
    Of darning and the Eight-Fifteen, where Euclid’s geometry
    And Newton’s mechanics would account for our experience,
    And the kitchen table exists because I scrub it.
    —W.H. (Wystan Hugh)